Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2325535

RESUMEN

The pathogenesis of the marked pulmonary microvasculature injury, a distinguishing feature of COVID-19 acute respiratory distress syndrome (COVID-ARDS), remains unclear. Implicated in the pathophysiology of diverse diseases characterized by endothelial damage, including ARDS and ischemic cardiovascular disease, ceramide and in particular palmitoyl ceramide (C16:0-ceramide) may be involved in the microvascular injury in COVID-19. Using deidentified plasma and lung samples from COVID-19 patients, ceramide profiling by mass spectrometry was performed. Compared with healthy individuals, a specific 3-fold C16:0-ceramide elevation in COVID-19 patient plasma was identified. Compared with age-matched controls, autopsied lungs of individuals succumbing to COVID-ARDS displayed a massive 9-fold C16:0-ceramide elevation and exhibited a previously unrecognized microvascular ceramide-staining pattern and markedly enhanced apoptosis. In COVID-19 plasma and lungs, the C16-ceramide/C24-ceramide ratios were increased and reversed, respectively, consistent with increased risk of vascular injury. Indeed, exposure of primary human lung microvascular endothelial cell monolayers to C16:0-ceramide-rich plasma lipid extracts from COVID-19, but not healthy, individuals led to a significant decrease in endothelial barrier function. This effect was phenocopied by spiking healthy plasma lipid extracts with synthetic C16:0-ceramide and was inhibited by treatment with ceramide-neutralizing monoclonal antibody or single-chain variable fragment. These results indicate that C16:0-ceramide may be implicated in the vascular injury associated with COVID-19.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Lesiones del Sistema Vascular , Humanos , Ceramidas , Pulmón/irrigación sanguínea
2.
Eur Radiol ; 33(7): 4700-4712, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2300234

RESUMEN

OBJECTIVES: To evaluate the frequency and pattern of pulmonary vascular abnormalities in the year following COVID-19. METHODS: The study population included 79 patients remaining symptomatic more than 6 months after hospitalization for SARS-CoV-2 pneumonia who had been evaluated with dual-energy CT angiography. RESULTS: Morphologic images showed CT features of (a) acute (2/79; 2.5%) and focal chronic (4/79; 5%) PE; and (b) residual post COVID-19 lung infiltration (67/79; 85%). Lung perfusion was abnormal in 69 patients (87.4%). Perfusion abnormalities included (a) perfusion defects of 3 types: patchy defects (n = 60; 76%); areas of non-systematized hypoperfusion (n = 27; 34.2%); and/or PE-type defects (n = 14; 17.7%) seen with (2/14) and without (12/14) endoluminal filling defects; and (b) areas of increased perfusion in 59 patients (74.9%), superimposed on ground-glass opacities (58/59) and vascular tree-in-bud (5/59). PFTs were available in 10 patients with normal perfusion and in 55 patients with abnormal perfusion. The mean values of functional variables did not differ between the two subgroups with a trend toward lower DLCO in patients with abnormal perfusion (74.8 ± 16.7% vs 85.0 ± 8.1). CONCLUSION: Delayed follow-up showed CT features of acute and chronic PE but also two types of perfusion abnormalities suggestive of persistent hypercoagulability as well as unresolved/sequelae of microangiopathy. CLINICAL RELEVANCE STATEMENT: Despite dramatic resolution of lung abnormalities seen during the acute phase of the disease, acute pulmonary embolism and alterations at the level of lung microcirculation can be identified in patients remaining symptomatic in the year following COVID-19. KEY POINTS: • This study demonstrates newly developed proximal acute PE/thrombosis in the year following SARS-CoV-2 pneumonia. • Dual-energy CT lung perfusion identified perfusion defects and areas of increased iodine uptake abnormalities, suggestive of unresolved damage to lung microcirculation. • This study suggests a complementarity between HRCT and spectral imaging for proper understanding of post COVID-19 lung sequelae.


Asunto(s)
COVID-19 , Embolia Pulmonar , Enfermedades Vasculares , Humanos , Angiografía por Tomografía Computarizada , Circulación Pulmonar , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , Pulmón/irrigación sanguínea , Embolia Pulmonar/diagnóstico por imagen
3.
Shock ; 57(1): 1-6, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2191212

RESUMEN

BACKGROUND: The pathomechanisms of hypoxemia and treatment strategies for type H and type L acute respiratory distress syndrome (ARDS) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 (COVID-19) have not been elucidated. MAIN TEXT: SARS-CoV-2 mainly targets the lungs and blood, leading to ARDS, and systemic thrombosis or bleeding. Angiotensin II-induced coagulopathy, SARS-CoV-2-induced hyperfibrin(ogen)olysis, and pulmonary and/or disseminated intravascular coagulation due to immunothrombosis contribute to COVID-19-associated coagulopathy. Type H ARDS is associated with hypoxemia due to diffuse alveolar damage-induced high right-to-left shunts. Immunothrombosis occurs at the site of infection due to innate immune inflammatory and coagulofibrinolytic responses to SARS-CoV-2, resulting in microvascular occlusion with hypoperfusion of the lungs. Lung immunothrombosis in type L ARDS results from neutrophil extracellular traps containing platelets and fibrin in the lung microvasculature, leading to hypoxemia due to impaired blood flow and a high ventilation/perfusion (VA/Q) ratio. COVID-19-associated ARDS is more vascular centric than the other types of ARDS. D-dimer levels have been monitored for the progression of microvascular thrombosis in COVID-19 patients. Early anticoagulation therapy in critical patients with high D-dimer levels may improve prognosis, including the prevention and/or alleviation of ARDS. CONCLUSIONS: Right-to-left shunts and high VA/Q ratios caused by lung microvascular thrombosis contribute to hypoxemia in type H and L ARDS, respectively. D-dimer monitoring-based anticoagulation therapy may prevent the progression to and/or worsening of ARDS in COVID-19 patients.


Asunto(s)
COVID-19/fisiopatología , Hemostasis/fisiología , Hipoxia/fisiopatología , Síndrome de Dificultad Respiratoria/fisiopatología , Trombosis/fisiopatología , Anticoagulantes/uso terapéutico , Biomarcadores/sangre , Plaquetas/metabolismo , Trampas Extracelulares/metabolismo , Fibrina/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Fibrinólisis , Humanos , Pulmón/irrigación sanguínea , Microvasos/fisiopatología , Fenotipo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , SARS-CoV-2 , Tromboinflamación/fisiopatología , Trombosis/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19
4.
Microvasc Res ; 145: 104454, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2095842

RESUMEN

OBJECTIVE: Subclinical life style disease can cause endothelial dysfunction associated with perfusion abnormalities and reduced vascular compliance. Subclinical elevated beta type natriuretic peptide (BNP) has been associated with altered fluid shift from extra to intracellular space during acute hypoxia. Therefore we measured vascular response and BNP levels during acute hypoxia to study endothelial functions among healthy individuals. METHODS: Individuals were exposed to acute normobaric hypoxia of FiO2 = 0.15 for one hour in supine position and their pulmonary and systemic vascular response to hypoxia was compared. Individuals were divided into two groups based on either no response (Group 1) or rise in systolic pulmonary artery pressure to hypoxia (Group 2) and their BNP levels were compared. RESULTS: BNP was raised after hypoxia exposure in group 2 only from 18.52 ± 7 to 21.56 ± 10.82 picogram/ml, p < 0.05. Group 2 also showed an increase in mean arterial pressure and no fall in total body water in response to acute hypoxia indicating decreased endothelial function compared to Group 1. CONCLUSION: Rise in pulmonary artery pressure and BNP level in response to acute normobaric hypoxia indicates reduced endothelial function and can be used to screen subclinical lifestyle disease among healthy population.


Asunto(s)
Hipoxia , Péptido Natriurético Encefálico , Humanos , Hipoxia/diagnóstico , Pulmón/irrigación sanguínea , Vasodilatadores , Estilo de Vida , Arteria Pulmonar
6.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1960624

RESUMEN

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Asunto(s)
COVID-19 , Pulmón , Cadenas Ligeras de Miosina , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tromboinflamación , Vasculitis , COVID-19/sangre , COVID-19/complicaciones , COVID-19/patología , Humanos , Leucocitos Mononucleares , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Cadenas Ligeras de Miosina/sangre , RNA-Seq , SARS-CoV-2/aislamiento & purificación , Análisis de la Célula Individual , Espectrometría por Rayos X , Tromboinflamación/patología , Tromboinflamación/virología , Vasculitis/patología , Vasculitis/virología
7.
Front Immunol ; 13: 879033, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1933662

RESUMEN

Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.


Asunto(s)
COVID-19 , Selectina E , Células Endoteliales , Humanos , Molécula 1 de Adhesión Intercelular , Interleucina-6 , Pulmón/irrigación sanguínea , Obesidad , SARS-CoV-2 , Molécula 1 de Adhesión Celular Vascular
8.
Eur J Radiol ; 150: 110259, 2022 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1748029

RESUMEN

PURPOSE: It is known from histology studies that lung vessels are affected in viral pneumonia. However, their diagnostic potential as a chest CT imaging parameter has only rarely been exploited. The purpose of this study is to develop a robust method for automated lung vessel segmentation and morphology analysis and apply it to a large chest CT dataset. METHODS: In total, 509 non-enhanced chest CTs (NECTs) and 563 CT pulmonary angiograms (CTPAs) were included. Sub-groups were patients with healthy lungs (group_NORM, n = 634) and those RT-PCR-positive for Influenza A/B (group_INF, n = 159) and SARS-CoV-2 (group_COV, n = 279). A lung vessel segmentation algorithm (LVSA) based on traditional image processing was developed, validated with a point-of-interest approach, and applied to a large clinical dataset. Total blood vessel volume in lung (TBV) and the blood vessel volume percentage (BV%) of three blood vessel size types were calculated and compared between groups: small (BV5%, cross-sectional area < 5 mm2), medium (BV5-10%, 5-10 mm2) and large (BV10%, >10 mm2). RESULTS: Sensitivity of the LVSA was 84.6% (95 %CI: 73.9-95.3) for NECTs and 92.8% (95 %CI: 90.8-94.7) for CTPAs. In viral pneumonia, besides an increased TBV, the main finding was a significantly decreased BV5% in group_COV (n = 14%) and group_INF (n = 15%) compared to group_NORM (n = 18%) [p < 0.001]. At the same time, BV10% was increased (group_COV n = 15% and group_INF n = 14% vs. group_NORM n = 11%; p < 0.001). CONCLUSION: In COVID-19 and Influenza, the blood vessel volume is redistributed from small to large vessels in the lung. Automated LSVA allows researchers and clinicians to derive imaging parameters for large amounts of CTs. This can enhance the understanding of vascular changes, particularly in infectious lung diseases.


Asunto(s)
COVID-19 , Gripe Humana , Neumonía Viral , Humanos , Gripe Humana/diagnóstico por imagen , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Estudios Retrospectivos , SARS-CoV-2
9.
Oxid Med Cell Longev ; 2022: 1630918, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1714452

RESUMEN

BACKGROUND: The impairment of microcirculation is associated with the unfavorable outcome for extracorporeal membrane oxygenation (ECMO) patients. Studies revealed that pulsatile modification improves hemodynamics and attenuates inflammation during ECMO support. However, whether flow pattern impacts microcirculation and endothelial integrity is rarely documented. The objective of this work was to explore how pulsatility affects microcirculation during ECMO. METHODS: Canine animal models with cardiac arrest were supported by ECMO, with the i-Cor system used to generate nonpulsatile or pulsatile flow. The sublingual microcirculation parameters were examined using the CytoCam microscope system. The expression of hsa_circ_0007367, a circular RNA, was measured during ECMO support. In vitro validation was performed in pulmonary vascular endothelial cells (PMVECs) exposed to pulsatile or nonpulsatile flow, and the expressions of hsa_circ_0007367, endothelial tight junction markers, endothelial adhesive molecules, endothelial nitric oxide synthases (eNOS), and NF-κB signaling activity were analyzed. RESULTS: The pulsatile modification of ECMO enhanced microcirculatory perfusion, attenuated pulmonary inflammation, and stabilized endothelial integrity in animal models; meanwhile, the expression of hsa_circ_0007367 was significantly upregulated both in animals and PMVECs exposed to pulsatile flow. In particular, upregulation of hsa_circ_0007367 stabilized the expressions of endothelial tight junction markers zonula occludens- (ZO-) 1 and occludin, followed by modulating the endothelial nitric oxide synthases (eNOS) activity and inhibiting the NF-κB signaling pathway. CONCLUSION: The modification of pulsatility contributes to microcirculatory perfusion and endothelial integrity during ECMO. The expression of hsa_circ_0007367 plays a pivotal role in this protective mechanism.


Asunto(s)
Ácidos Nucleicos Libres de Células/genética , Células Endoteliales/fisiología , Oxigenación por Membrana Extracorpórea/métodos , Paro Cardíaco/terapia , Animales , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Perros , Células Endoteliales/metabolismo , Paro Cardíaco/genética , Paro Cardíaco/patología , Paro Cardíaco/fisiopatología , Inflamación , Pulmón/irrigación sanguínea , Pulmón/patología , Microcirculación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ocludina/genética , Ocludina/metabolismo , Flujo Pulsátil , Ratas , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
10.
Microbiol Spectr ; 10(1): e0167121, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1691404

RESUMEN

The vascular endothelial injury occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, but the mechanisms are poorly understood. We sought to determine the frequency and type of cytokine elevations and their relationship to endothelial injury induced by plasma from patients with SARS-CoV-2 versus controls. Plasma from eight consecutively enrolled patients hospitalized with acute SARS-CoV-2 infection was compared to controls. Endothelial cell (EC) barrier integrity was evaluated using ECIS (electric cell-substrate impedance sensing) on human lung microvascular EC. Plasma from all SARS-CoV-2 but none from controls decreased transendothelial resistance to a greater degree than that produced by tumor necrosis factor-alpha (TNF-α), the positive control for the assay. Thrombin, angiopoietin 2 (Ang2), and vascular endothelial growth factor (VEGF), complement factor C3a and C5a, and spike protein increased endothelial permeability, but to a lesser extent and a shorter duration when compared to SARS-CoV-2 plasma. Analysis of Ang2, VEGF, and 15 cytokines measured in plasma revealed striking patient-to-patient variability within the SARS-CoV-2 patients. Pretreatment with thrombin inhibitors, single, or combinations of neutralizing antibodies against cytokines, Ca3 and C5a receptor antagonists, or with ACE2 antibody failed to lessen the SARS-CoV-2 plasma-induced EC permeability. The EC barrier destructive effects of plasma from patients with SARS-CoV-2 were susceptible to heat inactivation. Plasma from patients hospitalized with acute SARS-CoV-2 infection uniformly disrupts lung microvascular integrity. No predicted single, or set of, cytokine(s) accounted for the enhanced vascular permeability, although the factor(s) were heat-labile. A still unidentified but potent circulating factor(s) appears to cause the EC disruption in SARS-CoV-2 infected patients. IMPORTANCE Lung vascular endothelial injury in SARS-CoV-2 patients is one of the most important causes of morbidity and mortality and has been linked to more severe complications including acute respiratory distress syndrome (ARDS) and subsequent death due to multiorgan failure. We have demonstrated that in eight consecutive patients with SARS-CoV-2, who were not selected for evidence of endothelial injury, the diluted plasma-induced intense lung microvascular damage, in vitro. Known endothelial barrier-disruptive agents and proposed mediators of increased endothelial permeability in SARS-CoV-2, induced changes in permeability that were smaller in magnitude and shorter in duration than plasma from patients with SARS-CoV-2. The effect on endothelial cell permeability of plasma from patients with SARS-CoV-2 was heat-labile. The main plasma factor that causes the increased endothelial permeability remains to be identified. Our study provides a possible approach for future studies to understand the underlying mechanisms leading to vascular injury in SARS-CoV-2 infections.


Asunto(s)
COVID-19/sangre , Permeabilidad Capilar , Citocinas/sangre , Pulmón/irrigación sanguínea , SARS-CoV-2/fisiología , Adulto , Anciano , COVID-19/fisiopatología , COVID-19/virología , Células Endoteliales/virología , Femenino , Humanos , Pulmón/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/genética , Factor de Necrosis Tumoral alfa/sangre , Factor A de Crecimiento Endotelial Vascular , Adulto Joven
11.
Respir Res ; 23(1): 25, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1677511

RESUMEN

BACKGROUND: Pulmonary hyperinflammation is a key event with SARS-CoV-2 infection. Acute respiratory distress syndrome (ARDS) that often accompanies COVID-19 appears to have worse outcomes than ARDS from other causes. To date, numerous lung histological studies in cases of COVID-19 have shown extensive inflammation and injury, but the extent to which these are a COVID-19 specific, or are an ARDS and/or mechanical ventilation (MV) related phenomenon is not clear. Furthermore, while lung hyperinflammation with ARDS (COVID-19 or from other causes) has been well studied, there is scarce documentation of vascular inflammation in COVID-19 lungs. METHODS: Lung sections from 8 COVID-19 affected and 11 non-COVID-19 subjects, of which 8 were acute respiratory disease syndrome (ARDS) affected (non-COVID-19 ARDS) and 3 were from subjects with non-respiratory diseases (non-COVID-19 non-ARDS) were H&E stained to ascertain histopathological features. Inflammation along the vessel wall was also monitored by expression of NLRP3 and caspase 1. RESULTS: In lungs from COVID-19 affected subjects, vascular changes in the form of microthrombi in small vessels, arterial thrombosis, and organization were extensive as compared to lungs from non-COVID-19 (i.e., non-COVID-19 ARDS and non-COVID-19 non-ARDS) affected subjects. The expression of NLRP3 pathway components was higher in lungs from COVID-19 ARDS subjects as compared to non-COVID-19 non-ARDS cases. No differences were observed between COVID-19 ARDS and non-COVID-19 ARDS lungs. CONCLUSION: Vascular changes as well as NLRP3 inflammasome pathway activation were not different between COVID-19 and non-COVID-19 ARDS suggesting that these responses are not a COVID-19 specific phenomenon and are possibly more related to respiratory distress and associated strategies (such as MV) for treatment.


Asunto(s)
Vasos Sanguíneos/inmunología , COVID-19/inmunología , Inflamasomas/análisis , Pulmón/irrigación sanguínea , Proteína con Dominio Pirina 3 de la Familia NLR/análisis , Anciano , Anciano de 80 o más Años , Autopsia , Vasos Sanguíneos/patología , COVID-19/mortalidad , COVID-19/patología , COVID-19/virología , Estudios de Casos y Controles , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Persona de Mediana Edad
12.
Viruses ; 14(2)2022 01 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1650643

RESUMEN

The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.


Asunto(s)
COVID-19/complicaciones , Pulmón/irrigación sanguínea , Trombosis de la Vena/etiología , Trombosis de la Vena/patología , Factor de von Willebrand/análisis , Adulto , Autopsia , COVID-19/sangre , Endotelio Vascular/inmunología , Femenino , Humanos , Inmunohistoquímica/métodos , Pulmón/patología , Masculino , Persona de Mediana Edad , Neumonía Bacteriana/inmunología , Embolia Pulmonar , Índice de Severidad de la Enfermedad , Trombosis de la Vena/clasificación
13.
Microbiol Spectr ; 9(3): e0073521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1596765

RESUMEN

SARS-CoV-2 infection can cause compromised respiratory function and thrombotic events. SARS-CoV-2 binds to and mediates downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. Theoretically, diminished enzymatic activity of ACE2 may result in increased concentrations of pro-inflammatory molecules, angiotensin II, and Bradykinin, contributing to SARS-CoV-2 pathology. Using immunofluorescence microscopy of lung tissues from uninfected, and SARS-CoV-2 infected individuals, we find evidence that ACE2 is highly expressed in human pulmonary alveolar epithelial cells and significantly reduced along the alveolar lining of SARS-CoV-2 infected lungs. Ex vivo analyses of primary human cells, indicated that ACE2 is readily detected in pulmonary alveolar epithelial and aortic endothelial cells. Exposure of these cells to spike protein of SARS-CoV-2 was sufficient to reduce ACE2 expression. Moreover, exposure of endothelial cells to spike protein-induced dysfunction, caspase activation, and apoptosis. Exposure of endothelial cells to bradykinin caused calcium signaling and endothelial dysfunction (increased expression of von Willibrand Factor and decreased expression of Krüppel-like Factor 2) but did not adversely affect viability in primary human aortic endothelial cells. Computer-assisted analyses of molecules with potential to bind bradykinin receptor B2 (BKRB2), suggested a potential role for aspirin as a BK antagonist. When tested in our in vitro model, we found evidence that aspirin can blunt cell signaling and endothelial dysfunction caused by bradykinin in these cells. Interference with interactions of spike protein or bradykinin with endothelial cells may serve as an important strategy to stabilize microvascular homeostasis in COVID-19 disease. IMPORTANCE SARS-CoV-2 causes complex effects on microvascular homeostasis that potentially contribute to organ dysfunction and coagulopathies. SARS-CoV-2 binds to, and causes downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. It is thought that reduced ACE2 enzymatic activity can contribute to inflammation and pathology in the lung. Our studies add to this understanding by providing evidence that spike protein alone can mediate adverse effects on vascular cells. Understanding these mechanisms of pathogenesis may provide rationale for interventions that could limit microvascular events associated with SARS-CoV-2 infection.


Asunto(s)
COVID-19/fisiopatología , Células Endoteliales/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Aorta/citología , Aorta/metabolismo , Aorta/virología , Apoptosis , Bradiquinina/química , Bradiquinina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Homeostasis , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/virología , Microcirculación , Receptores de Bradiquinina/química , Receptores de Bradiquinina/genética , Receptores de Bradiquinina/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
14.
Platelets ; 33(1): 48-53, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1541393

RESUMEN

Coagulopathy is an evident complication of COVID-19 with predominance of a prothrombotic state. Platelet activation plays a key role. The terms "hyper-reactivity" and "hyperactivity" used in recent literature may not be clear or sufficient to explain the pathological events involved in COVID-related thrombosis (CRT). Inflammation may play a bigger role compared to thrombosis in COVID-related mortality because a smaller percentage of patients with COVID-19 die due to direct effects of thrombosis. Not all COVID-19 patients have thrombocytopenia and a few show thrombocytosis. We believe the platelet pathology is more complex than just activation or hyper-activation, particularly due to the platelets' role in inflammation. Understanding the pathology and consequences of platelets' role may help optimize management strategies and diminish CRT-associated morbidity and mortality. In this viewpoint report, we examine the published evidence of platelet hyper-reactivity in COVID-19 with a focused analysis of the key pathologies, diverse alterations, disease outcomes, and therapeutic targets. We believe that COVID-19 is a disease of inflammation and pathologic platelets, and based on the complexity and diverse pathologies, we propose the term "thrombocytopathy" as a more reflective term of the platelets' involvement in COVID-19. In our opinion, thrombocytopathy is the unpredictable pathologic alterations of platelets in function, morphology and number, caused by different factors with a variety of presentations.


Asunto(s)
Plaquetas/patología , COVID-19/complicaciones , Síndrome de Liberación de Citoquinas/complicaciones , Coagulación Intravascular Diseminada/complicaciones , Embolia Pulmonar/complicaciones , SARS-CoV-2/patogenicidad , Abciximab/uso terapéutico , Enfermedad Aguda , Anticoagulantes/uso terapéutico , Aspirina/uso terapéutico , Plaquetas/efectos de los fármacos , Plaquetas/virología , COVID-19/diagnóstico , COVID-19/virología , Clopidogrel/uso terapéutico , Síndrome de Liberación de Citoquinas/diagnóstico , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/virología , Coagulación Intravascular Diseminada/diagnóstico , Coagulación Intravascular Diseminada/tratamiento farmacológico , Coagulación Intravascular Diseminada/virología , Fibrinolíticos/uso terapéutico , Humanos , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Activación Plaquetaria/efectos de los fármacos , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/tratamiento farmacológico , Embolia Pulmonar/virología , Resultado del Tratamiento , Tratamiento Farmacológico de COVID-19
15.
PLoS One ; 16(10): e0257892, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1526682

RESUMEN

BACKGROUND: Coronavirus Disease 2019 (COVID-19) is a respiratory viral illness causing pneumonia and systemic disease. Abnormalities in pulmonary function tests (PFT) after COVID-19 infection have been described. The determinants of these abnormalities are unclear. We hypothesized that inflammatory biomarkers and CT scan parameters at the time of infection would be associated with abnormal gas transfer at short term follow-up. METHODS: We retrospectively studied subjects who were hospitalized for COVID-19 pneumonia and discharged. Serum inflammatory biomarkers, CT scan and clinical characteristics were assessed. CT images were evaluated by Functional Respiratory Imaging with automated tissue segmentation algorithms of the lungs and pulmonary vasculature. Volumes of the pulmonary vessels that were ≤5mm (BV5), 5-10mm (BV5_10), and ≥10mm (BV10) in cross sectional area were analyzed. Also the amount of opacification on CT (ground glass opacities). PFT were performed 2-3 months after discharge. The diffusion capacity of carbon monoxide (DLCO) was obtained. We divided subjects into those with a DLCO <80% predicted (Low DLCO) and those with a DLCO ≥80% predicted (Normal DLCO). RESULTS: 38 subjects were included in our cohort. 31 out of 38 (81.6%) subjects had a DLCO<80% predicted. The groups were similar in terms of demographics, body mass index, comorbidities, and smoking status. Hemoglobin, inflammatory biomarkers, spirometry and lung volumes were similar between groups. CT opacification and BV5 were not different between groups, but both Low and Normal DLCO groups had lower BV5 measures compared to healthy controls. BV5_10 and BV10 measures were higher in the Low DLCO group compared to the normal DLCO group. Both BV5_10 and BV10 in the Low DLCO group were greater compared to healthy controls. BV5_10 was independently associated with DLCO<80% in multivariable logistic regression (OR 1.29, 95% CI 1.01, 1.64). BV10 negatively correlated with DLCO% predicted (r = -0.343, p = 0.035). CONCLUSIONS: Abnormalities in pulmonary vascular volumes at the time of hospitalization are independently associated with a low DLCO at follow-up. There was no relationship between inflammatory biomarkers during hospitalization and DLCO. Pulmonary vascular abnormalities during hospitalization for COVID-19 may serve as a biomarker for abnormal gas transfer after COVID-19 pneumonia.


Asunto(s)
COVID-19/diagnóstico por imagen , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , SARS-CoV-2/metabolismo , Tomografía Computarizada por Rayos X , Adulto , Anciano , Biomarcadores/metabolismo , COVID-19/metabolismo , COVID-19/terapia , Femenino , Estudios de Seguimiento , Hospitalización , Humanos , Pulmón/metabolismo , Pulmón/virología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
17.
Rheumatology (Oxford) ; 60(1): 399-407, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1388014

RESUMEN

OBJECTIVES: The Janus kinase (JAK) inhibitor baricitinib may block viral entry into pneumocytes and prevent cytokine storm in patients with SARS-CoV-2 pneumonia. We aimed to assess whether baricitinib improved pulmonary function in patients treated with high-dose corticosteroids for moderate to severe SARS-CoV-2 pneumonia. METHODS: This observational study enrolled patients with moderate to severe SARS-CoV-2 pneumonia [arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (FiO2) <200 mmHg] who received lopinavir/ritonavir and HCQ plus either corticosteroids (CS group, n = 50) or corticosteroids and baricitinib (BCT-CS group, n = 62). The primary end point was the change in oxygen saturation as measured by pulse oximetry (SpO2)/FiO2 from hospitalization to discharge. Secondary end points included the proportion of patients requiring supplemental oxygen at discharge and 1 month later. Statistics were adjusted by the inverse propensity score weighting (IPSW). RESULTS: A greater improvement in SpO2/FiO2 from hospitalization to discharge was observed in the BCT-CS vs CS group (mean differences adjusted for IPSW, 49; 95% CI: 22, 77; P < 0.001). A higher proportion of patients required supplemental oxygen both at discharge (62.0% vs 25.8%; reduction of the risk by 82%, OR adjusted for IPSW, 0.18; 95% CI: 0.08, 0.43; P < 0.001) and 1 month later (28.0% vs 12.9%, reduction of the risk by 69%, OR adjusted for IPSW, 0.31; 95% CI: 0.11, 0.86; P = 0.024) in the CS vs BCT-CS group. CONCLUSIONS: . In patients with moderate to severe SARS-CoV-2 pneumonia a combination of baricitinib with corticosteroids was associated with greater improvement in pulmonary function when compared with corticosteroids alone. TRIAL REGISTRATION: European Network of Centres for Pharmacoepidemiology and Pharmacovigilance, ENCEPP (EUPAS34966, http://www.encepp.eu/encepp/viewResource.htm? id = 34967).


Asunto(s)
Azetidinas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Glucocorticoides/uso terapéutico , Hipoxia/terapia , Inhibidores de las Cinasas Janus/uso terapéutico , Metilprednisolona/uso terapéutico , Terapia por Inhalación de Oxígeno/estadística & datos numéricos , Purinas/uso terapéutico , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Anciano , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/fisiopatología , Estudios de Cohortes , Combinación de Medicamentos , Quimioterapia Combinada , Endotelio Vascular , Inhibidores Enzimáticos/uso terapéutico , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , Hidroxicloroquina/uso terapéutico , Inmunoglobulinas Intravenosas/uso terapéutico , Factores Inmunológicos/uso terapéutico , Interferon beta-1b/uso terapéutico , Lopinavir/uso terapéutico , Pulmón/irrigación sanguínea , Masculino , Persona de Mediana Edad , Oximetría , Estudios Prospectivos , Ritonavir/uso terapéutico , SARS-CoV-2 , Índice de Severidad de la Enfermedad
19.
Lancet Infect Dis ; 20(10): 1135-1140, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1377877

RESUMEN

BACKGROUND: COVID-19 is characterised by respiratory symptoms, which deteriorate into respiratory failure in a substantial proportion of cases, requiring intensive care in up to a third of patients admitted to hospital. Analysis of the pathological features in the lung tissues of patients who have died with COVID-19 could help us to understand the disease pathogenesis and clinical outcomes. METHODS: We systematically analysed lung tissue samples from 38 patients who died from COVID-19 in two hospitals in northern Italy between Feb 29 and March 24, 2020. The most representative areas identified at macroscopic examination were selected, and tissue blocks (median seven, range five to nine) were taken from each lung and fixed in 10% buffered formalin for at least 48 h. Tissues were assessed with use of haematoxylin and eosin staining, immunohistochemical staining for inflammatory infiltrate and cellular components (including staining with antibodies against CD68, CD3, CD45, CD61, TTF1, p40, and Ki-67), and electron microscopy to identify virion localisation. FINDINGS: All cases showed features of the exudative and proliferative phases of diffuse alveolar damage, which included capillary congestion (in all cases), necrosis of pneumocytes (in all cases), hyaline membranes (in 33 cases), interstitial and intra-alveolar oedema (in 37 cases), type 2 pneumocyte hyperplasia (in all cases), squamous metaplasia with atypia (in 21 cases), and platelet-fibrin thrombi (in 33 cases). The inflammatory infiltrate, observed in all cases, was largely composed of macrophages in the alveolar lumina (in 24 cases) and lymphocytes in the interstitium (in 31 cases). Electron microscopy revealed that viral particles were predominantly located in the pneumocytes. INTERPRETATION: The predominant pattern of lung lesions in patients with COVID-19 patients is diffuse alveolar damage, as described in patients infected with severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses. Hyaline membrane formation and pneumocyte atypical hyperplasia are frequent. Importantly, the presence of platelet-fibrin thrombi in small arterial vessels is consistent with coagulopathy, which appears to be common in patients with COVID-19 and should be one of the main targets of therapy. FUNDING: None.


Asunto(s)
Infecciones por Coronavirus/patología , Pulmón/patología , Neumonía Viral/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Femenino , Humanos , Enfermedad de la Membrana Hialina , Inflamación , Italia/epidemiología , Pulmón/irrigación sanguínea , Pulmón/ultraestructura , Pulmón/virología , Masculino , Persona de Mediana Edad , Infiltración Neutrófila , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/patología , Alveolos Pulmonares/ultraestructura , Alveolos Pulmonares/virología , Arteria Pulmonar/patología , SARS-CoV-2 , Trombosis
20.
J Med Virol ; 93(9): 5390-5395, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1363677

RESUMEN

Hypercoagulability and thrombosis caused by coronavirus disease 2019 (COVID-19) are related to the higher mortality rate. Because of limited data on the antiplatelet effect, we aimed to evaluate the impact of aspirin add-on therapy on the outcome of the patients hospitalized due to severe COVID-19. In this cohort study, patients with a confirmed diagnosis of severe COVID-19 admitted to Imam Hossein Medical Center, Tehran, Iran from March 2019 to July 2020 were included. Demographics and related clinical data during their hospitalization were recorded. The mortality rate of the patients was considered as the primary outcome and its association with aspirin use was assessed. Nine hundred and ninety-one patients were included, of that 336 patients (34%) received aspirin during their hospitalization and 655 ones (66%) did not. Comorbidities were more prevalent in the patients who were receiving aspirin. Results from the multivariate COX proportional model demonstrated a significant independent association between aspirin use and reduction in the risk of in-hospital mortality (0.746 [0.560-0.994], p = 0.046). Aspirin use in hospitalized patients with COVID-19 is associated with a significant decrease in mortality rate. Further prospective randomized controlled trials are needed to assess the efficacy and adverse effects of aspirin administration in this population.


Asunto(s)
Aspirina/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Coagulación Intravascular Diseminada/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Embolia Pulmonar/tratamiento farmacológico , SARS-CoV-2/patogenicidad , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Adulto , Anciano , Alanina/análogos & derivados , Alanina/uso terapéutico , Antivirales/uso terapéutico , Plaquetas/efectos de los fármacos , Plaquetas/patología , Plaquetas/virología , COVID-19/complicaciones , COVID-19/mortalidad , COVID-19/virología , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/virología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/mortalidad , Diabetes Mellitus/virología , Coagulación Intravascular Diseminada/complicaciones , Coagulación Intravascular Diseminada/mortalidad , Coagulación Intravascular Diseminada/virología , Combinación de Medicamentos , Femenino , Mortalidad Hospitalaria , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/mortalidad , Hipertensión/virología , Irán , Lopinavir/uso terapéutico , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Embolia Pulmonar/complicaciones , Embolia Pulmonar/mortalidad , Embolia Pulmonar/virología , Respiración Artificial/mortalidad , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos , Ritonavir/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA